III B.Tech - I Semester - Regular/Supplementary Examinations October - 2019

DESIGN METHODS AND ANALYSIS OF ALGORITHMS (INFORMATION TECHNOLOGY)

Duration: 3 hours
Max. Marks: 70

PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) What is an algorithm? Explain with an example.
b) Define the time complexity and space complexity of an algorithm.
c) Define knapsack problem.
d) What is called brute force approach? Write it's advantages.
e) Compare divide-and-conquer and decrease-and-conquer techniques.
f) Discuss heap sort.
g) State Floyd's algorithm.
h) Discuss Dijkstra's algorithm.
i) Draw the decision tree for searching a three-element sorted list by sequential search.
j) Define NP- complete problem.
k) Define Hamiltonian circuit problem.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Discuss in detail about various asymptotic notations used to represent the algorithm efficiency with examples. 8 M
b) List the following functions according to their order of growth from lowest to highest.
$(\mathrm{n}-2)!, 5 \lg (\mathrm{n}+100)^{10}, 2^{2 \mathrm{n}}, 0.001 \mathrm{n}^{4}+3 \mathrm{n}^{3}+1,3 \sqrt{n}, \ln ^{2} \mathrm{n} \quad 8 \mathrm{M}$
3. a) Illustrate the selection sort with an example.
b) Illustrate the assignment problem using exhaustive search technique with suitable example.
4. a) How to perform Strassen's matrix multiplication using divide- and-conquer technique.
b) Explain the source -removal algorithm for the topological sorting with suitable example.
5. a) Test Kruskal's algorithm with suitable example.

8 M
b) Compare greedy method and dynamic programming technique.
6. a) What is called backtracking? Write the N-queen's algorithm and illustrate with an algorithm.
b) Draw the state space tree for the following knapsack problem.
$\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right)=(4,7,8,3) ;\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right)=(40,42,25,12) ;$ $\mathrm{W}=10$

